دانلود مقاله ديفرانسيل وانتگرال 20 ص

دسته بندي : مقاله » مقالات فارسی مختلف
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل :  word (..doc) ( قابل ويرايش و آماده پرينت )
تعداد صفحه : 20 صفحه

 قسمتی از متن word (..doc) : 
 

1
‏خط مماس
‏بسياري از مسائل مهم حساب ديفرانسيل وانتگرال، به مسئله پيدا كردن خط مماس وارد بر منحني در يك نقطه معين روي منحني مربوط مي شوند. در هندسه مسطحه اگر منحني دايره باشد، خط مماس در يك نقطه P‏ روي دايره، به عنوان خطي تعريف مي شود كه دايره را فقط در يك نقطه قطع مي كند. اين تعريف در حالت كلي براي همه منحنيها صادق نيست. به عنوان مثال، خطي كه مي خواهيم در نقطه P‏ بر منحني مماس باشد، منحني را در نقطه ديگري مانند Q‏ قطع خواهد كرد.
‏در اين بخش، تعريف مناسبي از خط مماس بر نمودار يك تابع در نقطه اي روي نمودار، ارائه مي دهيم. براي اين كار، ضريب زاويه خط مماس در يك نقطه را تعريف مي كنيم، زيرا اگر ضريب زاويه يك خط و نقطه اي روي آن معلوم باشند، آن خط معين مي شود.
‏تصور كنيد تابع f‏ در x1‏ پيوسته است. مي خواهيم ضريب زاويه خط مماس بر نمودار f‏ در نقطه P(x1,f(x1)) ‏ را به دست آوريم. فرض كنيد I‏ بازه بازي باشد كه شامل x1‏ است و f‏ بر اين بازه تعريف شده است.نقطه ديگر Q(x2,f(x2))‏ را روي نمودار f‏ در نظر مي گيريم به طوري كه x2‏ نيز در I‏ باشد. خطي را كه از p‏ و Q‏ مي گذرد رسم مي كنيم. هر خطي كه از دو نقطه يك منحني بگذرد، خط قاطع ناميده مي شود؛ پس خط گذرنده از p‏ و
3
Q‏ يك خط قاطع است. خط قاطع به موازي مقادير مختلف x2‏ رسم شده است . يك خط قاطع خاص نشان داده شده است. در اين شكل Q‏ در طرف راست P‏ قرار دارد. معهذا، Q‏ مي تواند در طرف چپ P‏ نيز باشد .
‏تفاضل طولهاي نقاط P‏ و Q‏ را با ‏ نشان مي دهيم. بنابراين
‏ممكن است مثبت يا منفي باشد. پس، ضريب زاويه خط قاطع PQ‏ به شرطي كه PQ‏ قائم نباشد، از رابطه زير به دست مي آيد.

‏چون ‏ x2=x1+‏ ، معادله فوق را مي توانيم به صورت زير بنويسيم.
‏حال فرض نقطه P‏ ثابت باشد، و نقطه Q‏ را در طول منحني به طرف P‏ حركت دهيم، يعني Q‏ به سمت P‏ ميل كند.اين عمل معادل است با اينكه‏ را به سمت صفر ميل بدهيم. ضمن انجام اين عمل، خط قاطع حول نقطه ثابت P‏ گردش مي كند. اگر اين خط قاطع داراي يك وضعيت حدي باشد، همين وضعيت حدي است كه ما مي خواهيم خط مماس بر نمودار در نقطه P‏ باشد. از اين رو، مي خواهيم ضريب زاويه خط مماس بر نمودار در P‏، برابر با حد mPQ‏ باشد وقتي كه ‏ به سمت صفر ميل مي كند، البته چنانچه اين حد وجود داشته باشد. اگر

 
دسته بندی: مقاله » مقالات فارسی مختلف

تعداد مشاهده: 3471 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: .zip

تعداد صفحات: 20

حجم فایل:49 کیلوبایت

 قیمت: 14,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل